

The Effects of Whey Protein on Body Composition: A Meta-Analysis of Randomized Controlled Trials

Paige E. Miller, PhD, MPH, RD; Dominick D. Alexander, PhD, MSPH; Vanessa Perez, PhD Exponent Inc., Health Sciences, Chicago, IL, Boulder, CO.

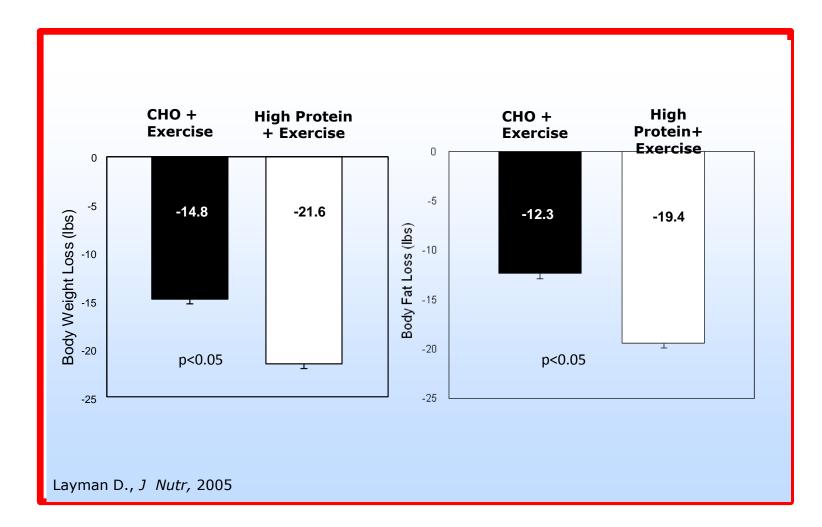
AGENDA

- Background
- Objective
- Methodology
- Key Findings
- Conclusion
- Future Research Needs
- Resources

BACKGROUND

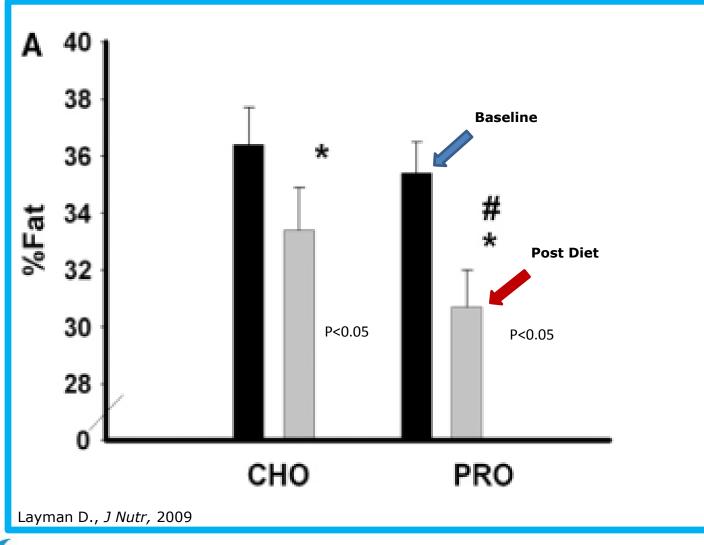
Background

- A growing body of evidence has shown that diet composition, in addition to reduced calorie intake and increased physical activity, is a critical component of weight loss and weight maintenance¹⁻³.
- Recent findings have favored a higher protein, lower carbohydrate diet for weight loss^{2,3}.
- Higher protein diets appear beneficial for reducing fat mass as well as preserving lean body mass and resting energy expenditure³.



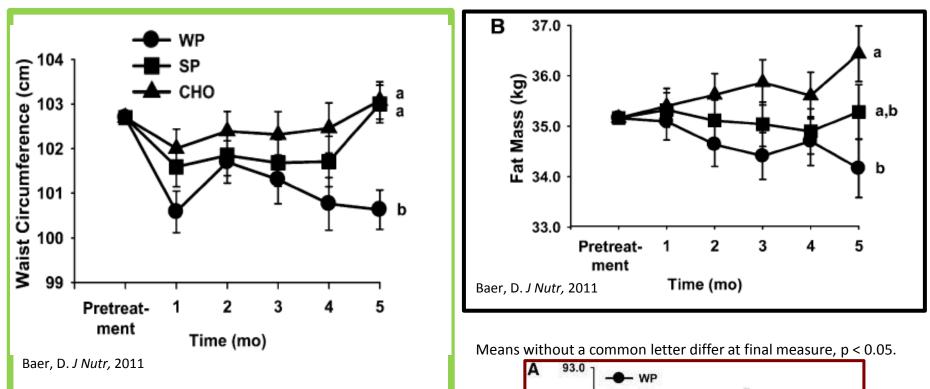
- Noakes, M, Reogh JB, Foster PR, Clifton PM: Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional highcarbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr 81: 1298-306, 2005.
- Hession M, Rolland C, Kulkarni U, Wise A, Broom J: Systematic review of randomized controlled trials of low-carbohydrate vs. lowfat/low-calorie diets in the management of obesity and its comorbidities. Obesity reviews: an official journal of the International Association for the Study of Obesity 10:36-50, 2009.
- Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD: Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr 96:1281-98, 2012.

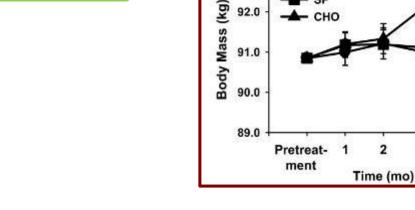
High Protein Diets: Weight and Body Fat


Author(s)	Title	Journal	Date/Vol/Issue/Pg
Josse AR, et al.	Diets higher in dairy foods and dietary protein support bone health during diet-and exercise-induced weight	The Journal of	2012 Jan; 97(1):251-60
	loss in overweight and obese premenopausal women	Clinical	
		Endocrinology and	
		Metababolism	
Mojtahedi MC,,	The effects of a higher protein intake during energy restriction on changes in body composition and physical	The Journals of	2011; 66(11): 1218-25
et al.	function in older women	Gerontology. Series	
		A, Biological	
		Sciences and	
		Medical Sciences.	
Bortolotti M, et al.	Effects of a whey protein supplementation on intrahepatocellular lipids in obese female patients	Clinical Nutrition	2011; 30(4): 494-498
Josse AR, et al.	Increased consumption of dairy foods and protein during diet-and exercise-induced weight loss promotes fat	The Journal of	2011; 141: 1626-1634
	mass loss and lean mass gain in overweight and obese premenopausal women	Nutrition	
Baer DJ, et al.	Whey protein but not soy protein supplementation alters body weight and composition in free-living	The Journal of	2011; 141(8): 1489-94
	overweight and obese adults	Nutrition	
Soenen S et al.	Changes in body fat percentage during body weight stable conditions of increased daily protein intake vs.	Physiology &	2010; 101: 635-638
	control	Behavior	
Nycherley TP, et	A High Protein Diet With Resistance Exercise Training Improves Weight Loss And Body Composition In	Diabetes Care	2010
al.	Overweight And Obese Patients With Type 2 Diabetes		
ayman DK, et al.	A Moderate-Protein Diet Produces Sustained Weight Loss and Long-Term Changes in Body Composition and	Journal of Nutrition	2009; 139(3):514-21
	Blood Lipids in Obese Adults		
ayman DK, et al.	Dietary Protein and Exercise Have Additive Effects on Body Composition during Weight Loss in Adult Women	Journal of Nutrition	2005; 135: 1903–1910
Lejeune MP, et	Additional protein intake limits weight regain after weight loss in humans	British Journal of	2005; 93(2):281-9
al.		Nutrition	
uscombe-Marsh	Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting	American Journal of	2005; 81:762–72
ND, et al.	fat loss and improving blood lipids	Clinical Nutrition	
Neigle DS, et al.	A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite	American Journal of	2005; 82:41-48
-	compensatory changes in diurnal plasma leptin and ghrelin concentrations	Clinical Nutrition	
Nesterterp-	High protein intake sustains weight maintenance after body weight loss in humans	International Journal	2004; 28(1):57-64
Plantenga MS, et		of Obesity Related	
al.		Metabolic Disorders	
ayman DK, et al.	A Reduced Ratio of Dietary Carbohydrate to Protein Improves Body Composition and Blood Lipid Profiles during	Journal of Nutrition	2003;133: 411–415

High Protein Diets: Weight and Body Fat

High Protein Diets: Body Fat



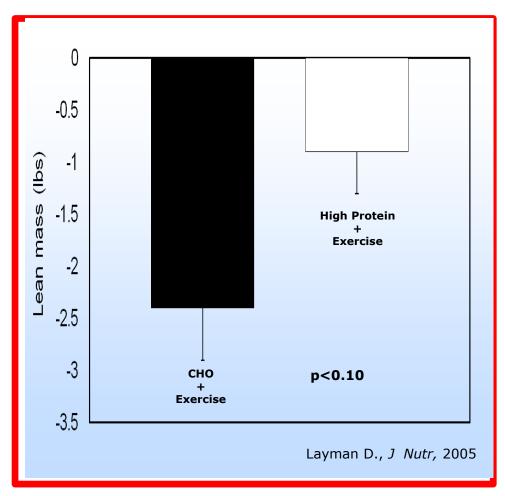


* = within group difference from baseline, p<0.05

= treatment effect compared with baseline, p<0.05

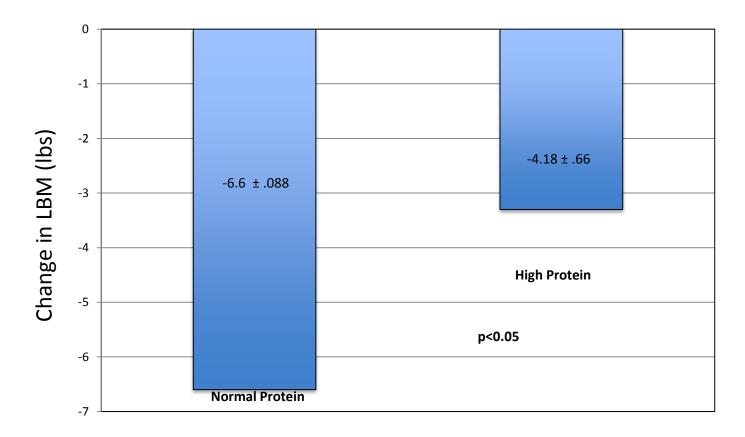
High Protein Diets: Waist Circumference and Body Fat Mass

92.0

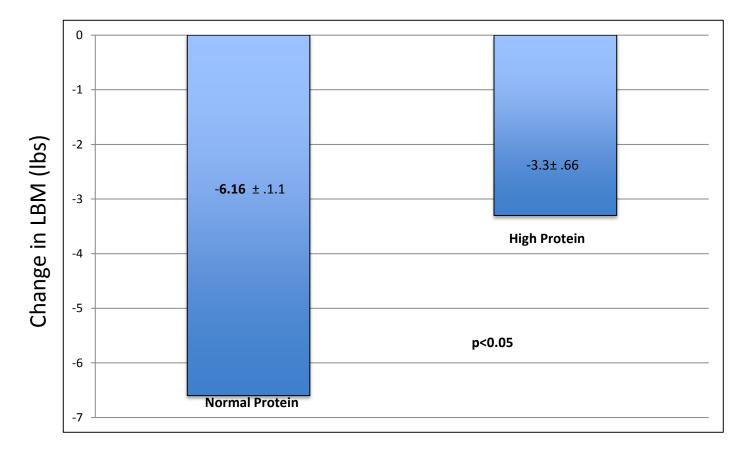

CHO

a,b

High Protein Diets: Lean Body Mass & Muscle

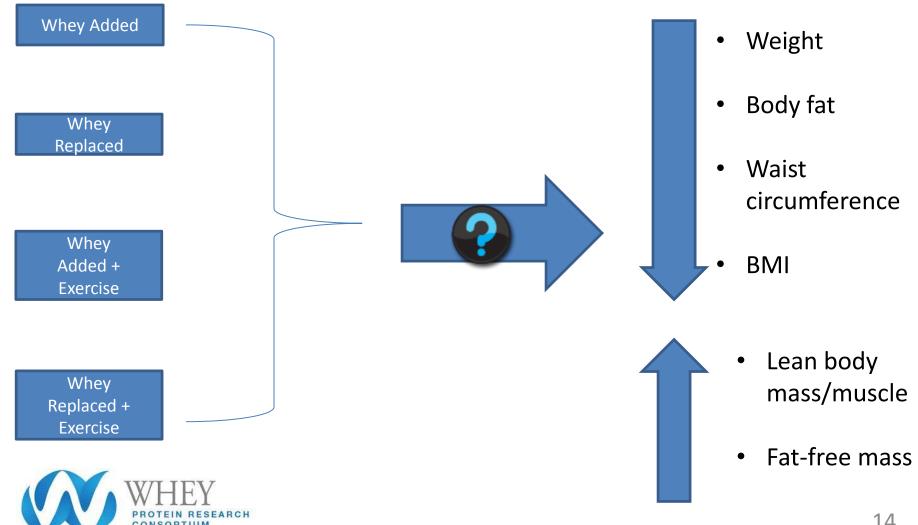

Author(s)	Title	Journal	Date/Vol/Issue/Pg
Leidy, et al.	Higher Protein Intake Preserves Lean Mass and Satiety with Weight Loss in Pre-obese and Obese Women	Obesity	2007 Feb; 15 (2): 421-429
Dideriksen KJ, et al.	Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals	Scandinavian Journal of Medicine & Science in Sports.	2011 Dec;21(6):e372-83
Rowlands DS, et al.	The transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein	Physiological Genomics.	2011; 43(17): 1004-20
Burd NA, et al.	Enhanced Amino Acid Sensitivity of Myofibrillar Protein Synthesis Persists for up to 24 h after Resistance Exercise in Young Men	The Journal of Nutrition	2011; 141(4): 568-573
Beelen M, et al.	Impact of protein coingestion on muscle protein synthesis during continuous endurance type exercise	American Journal of Physiology. Endocrinology and Metabolism	2011 Jun;300(6):E945-54.
Breen L, et al.	The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis	The Journal of Physiology	2011; 589(16): 4011-25
Pasiakos SM, et al.	Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances post exercise muscle protein synthesis	The American Journal of Clinical Nutrition	2011; 94: 809-818
Beelen M, et al	Impact of protein coingestion on muscle protein synthesis during continuous endurance type exercise	American Journal of Physiology. Endocrinology and Metabolism	2011; 300(6): E945-E954
West DWD, et al.	Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise	The American Journal of Clinical Nutrition	2011; 94: 795-803
G Coffey, et al.	Nutrient provision increases signaling and protein synthesis in human skeletal muscle after repeated sprints	European Journal of Applied Physiology	2011 Jul;111(7):1473-83
Burd NA, et al.	Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men	J. Physiol.	2012;590(Pt 2):351-62
Soop M, et al.	Co-ingestion of whey protein and casein in a mixed meal—demonstration of a more sustained anabolic effect of casein	Am J Physiol Endocrinol Metab.	2012 Jul 1;303(1):E152-62.
Farnfield MM, et al	Activation of motor signaling in young and old human skeletal muscle in response to combined resistance exercise and whey protein ingestion	Appl Physiol Nutr Metab.	2012; 37(1): 21-30
Churchward-Venne TA, et al	Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism	Nutr Metab (Lond)	2012; 9(1): 40
Tang, M, et al.	Normal vs. High-Protein Weight Loss Diets in Men: Effects on Body Composition and Indices of Metabolic Syndrome	Obesity	2013; 21, E204-E210

HIGH PROTEIN DIETS: LEAN BODY MASS & MUSCLE

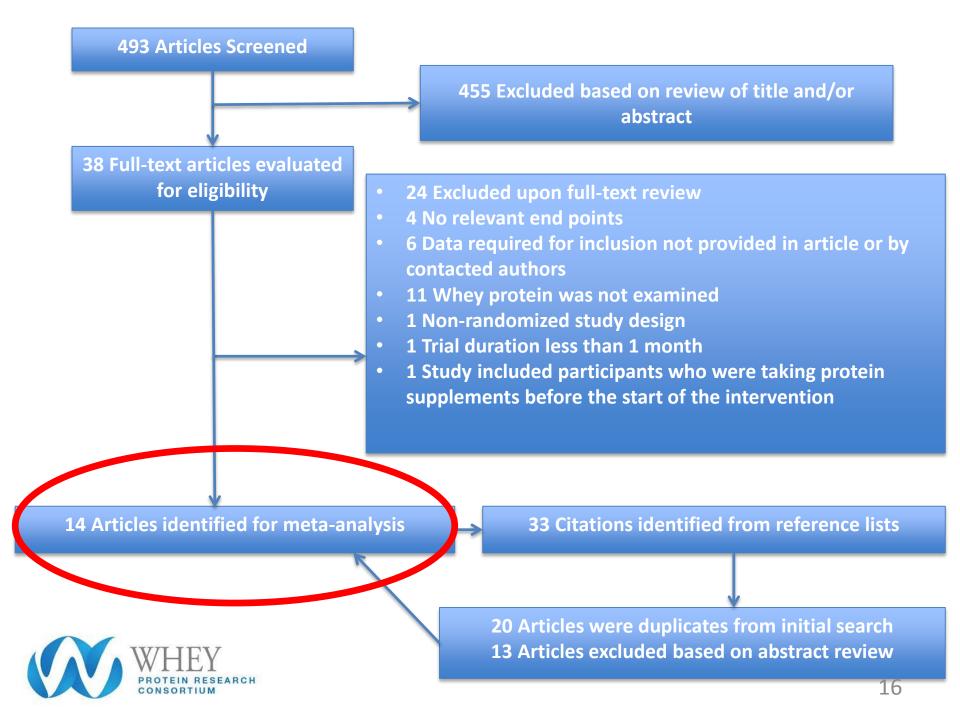

HIGH PROTEIN DIETS: LEAN BODY MASS & MUSCLE

Tang, M. Obesity, 2013

HIGH PROTEIN DIETS: LEAN BODY MASS & MUSCLE

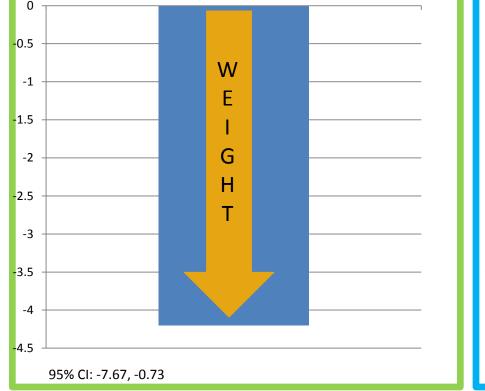

Leidy, H. Obesity, 2007

OBJECTIVE



Meta-Analysis Objective

METHODOLOGY



RESULTS

Results

Whey Protein Replacement: Body Weight Change 4.2 (kg) from Baseline to Trial End (5 studies)

Whey Protein Provisions and Resistance Exercise: Lean Body Mass Change 2.24 (kg) from Baseline to Trial End (7 studies)

On average, people lost 4.2 kg (9.2 lbs) from baseline to trial end when whey protein iso-calorically replaced another protein source or carbohydrate

CONCLUSION

Conclusion

- The authors concluded the current body of literature supports the use of whey protein to improve body composition, either as a supplement combined with resistance exercise or as part of a weight-loss or weight-maintenance diet.
- The beneficial effects of whey protein on body composition are most pronounced when consumed in concert with resistance exercise and an overall healthy diet that compensates for the additional calories from supplementation.

Future Research Needs

 Studies designed to examine the effects of whey protein by relevant demographic characteristics to determine the optimal dosage, trial duration and type and frequency of resistance exercise

 Longer-term (at least one year) randomized controlled trials with whey protein supplementation, calorie compensation and resistance exercise

Educational Resources

visit http://www.wheyconsortium.org/meta-analysis for more information

Toolkit: Whey Protein Fact Sheet

WHEY FACT SHEET

The Whey to Improved Body Composition and Weight

As science continues to support the role of protein in building and maintaining lean muscle, maintaining weight and healthy aging, consumers are embracing the important role of protein in the diet. But not all proteins are created equal and it turns out that protein quality has an important role when it comes to body composition and maraging a healthy weight.

Whey protein is high-quality protein naturally cound in dairy, it is a complete protein containing all the issential airmo acids ("building block") your body needs and is ragiolity digestible. Whey protein is also one of the best sources of a subgroup of three essential amino acids, called branched-chain amino acids (BCAAs), which include leucine, isoleacine and valine. Unlike other amino acids BCAAs are almost exclusively taken up and used by muscle. And, among common food sources of BCAAs, whey protein contains one of the highest levids of leucine, which has been shown to intrunce muscle growth.

BODY COMPOSITION Combining whey protein with A recent meta-analysis shows that resistance exercise has been consumption of whey protein when shown to be more effective at increasing lean muscle mass combined with resistance exercise training is an effective strategy that than either of the two alone, aids in building valuable lean body or when combining resistance mans in adults¹ training with ingestion of carbohydrate Whey protein is naturally rich In leucine, an essential amini acid that stimulates cellular pathways leading to increased nuscle protein synthesis? Consuming whey protein after exercise can enhance the ebuilding of muscle following exercise via enhanced muscle Consuming whey protein in combination with resistance exercise can boost the rate at which the body synthesize lean muscle, which may mprove bod composi

hats" A reduced calorie, higher protein det including whey protein management. After a period of weight loss, dicts high in protein preserve lean body mass, including muscle, during weight

maintenance.***

Brought to you by

ADDING WHEY PROTEIN TO THE DIET IS EASY:

many energy bars and drink

mixes, and is now available in

some yogurts. Look for "whey

beginning of the Ingredient

list. Whey Protein Powder,

way to add high quality p

for tourite foods

which is available in a variety of flavors, is a fast and easy

Add 1/2 - 1 scoop of whey protein powder to milk, yogurt, pudding, aatmeal, mikshakes, smoothies, or cocoa. Add 2 or more scoops of whey protein powder to bread, cookie, pancake and multim pulses or service

eln" (Isolate, col

or hydrolyzed) near the

Whey pro

n on Body Composition Iol Nute 2014: 33 (2)

FOR MORE INFORMATION. CONTACT:

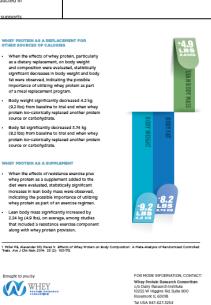
Whay Protein Research Consorthum c/o Dairy Research Institute 10255 W Higgins Rd, Suite 900 Rosemont L. 60018 Tel USA 847-627-3254

- Created for consumers
- Highlights nutritional benefits
- Includes general information on whey intake

Toolkit: Meta-Analysis Key Findings

META-ANALYSIS KEY FINDINGS

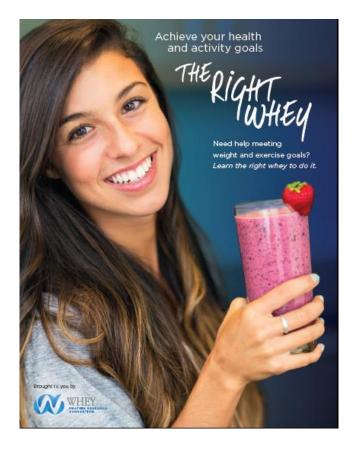
Brought to you by


The Effects of Whey Protein on Body Composition: A Meta-Analysis of Randomized Controlled Trials

> A meta-analysis' published in the March/April 2014 issue of the Journal of the American College of Nutrition adds further evidence to the growing body of literature supporting the benefits of whey protein for weight maintenance and lean body mass. Through a comprehensive literature search, study authors examined the effect of whey protein-either as an addition to the diet or replacement for other calories coming from different protein sources or carbohydrates- with or without resistance exercise, on body weight and body composition in randomized controlled trials conducted in generally healthy adult study populations.

The authors concluded that the current body of literal the use of whey protein to improve body comp a supplement combined with resistance exercise weight-loss or weight-maintenance diet. The be whey protein on body composition are most p consumed along with resistance exercise and an o that compensates for the additional calories from

KEY EINDING


- · Fourteen randomized control trials were included as par meta-analysis, with a total of 626 adult participants Five studies examined the effects of whey protein as a for other sources of calories Nine studies examined the effects of whey protein as
- Collectively, the evidence from randomized controlled to modest beneficial effect of whey protein on body weigh either as a supplement combined with resistance exe weight-loss or weight-maintenance diet.

- Created for health professionals
- Summarizes key findings • from meta-analysis
- Includes study background, • methodology and outcomes

Toolkit: Whey Protein Brochure

- Created for consumers
- Highlights benefits of whey protein
- Includes tips on incorporating whey into diet & lifestyle

Toolkit: Advertorial

- Created for health professionals
- Highlights contents of WPRC educational toolkit

Additional Resources

Whey Protein Research Consortium Members:

http://www.wheyconsortium.org/Pages/Home.aspx

- Agrimark http://www.agrimark.coop/
- American Dairy Products Institute
 <u>http://www.adpi.org/</u>
- Arla Foods
 <u>http://www.arlafoodsusa.com/</u>
- Dairy Research Institute
 <u>http://www.usdairy.com/DairyResearchIns</u>
 <u>titute/Pages/DRI-Refresh.aspx</u>
- Danone http://www.danone.com/?lang=en
- Darigold http://www.darigold.com/
- Davisco Foods
 <u>http://www.daviscofoods.com/</u>
- Foremost Farms
 http://www.foremostfarms.com/

- Glanbia Nutritionals
 <u>http://glanbianutritionals.com/</u>
- Hilmar Ingredients
 http://www.hilmaringredients.com/home/
- Midwest Dairy Association <u>http://www.midwestdairy.com/</u>
- The Hershey Company
 <u>http://www.thehersheycompany.com/</u>
- U.S. Dairy Export Council
 http://www.usdec.org/home.cfm?navItem
 Number=82205
- Volac International
 <u>http://www.volac.com/</u>
- Wisconsin Milk Marketing Board
 http://www.eatwisconsincheese.com/

